动力系统 技术专题简介-冯金伟博客园

简介

  此条目的主题是数学概念。关于有关车辆中产生动力的来源,请见“动力总成”。 洛伦茨吸引子的动态系统动力系统(dynamical system)是数学上的一个概念。动力系统是一种固定的规则,它描述一个给定空间(如某个物理系统的状态空间)中所有点随时间的变化情况。例如描述钟摆晃动、管道中水的流动,或者湖中每年春季鱼类的数量,凡此等等的数学模型都是动力系统。在动力系统中有所谓状态的概念,状态是一组可以被确定下来的实数。这组实数也是一种流形的几何空间坐标。动力系统的演化规则是一组函数的固定规律,它描述未来状态如何依赖于当前状态的。这种规则是确定性的,即对于给定的时间间隔内,从现在的状态只能演化出一个未来的状态。若只是在一系列不连续的时间点考察系统的状态,则这个动力系统为离散动力系统;若时间连续,就得到一个连续动力系统。如果系统以一种连续可微的方式依赖于时间,我们就称它为一个光滑动力系统。

历史

许多人视法国数学家及物理学家庞加莱为动力系统的创始者。他发行了两份现在被誉为经典的专着:天体力学的新方法《天体力学的新方法》(New Methods of Celestial Mechanics,1892–1899)、《天体力学讲义》(Lectures on Celestial Mechanics,1905–1910)。专着中,他成功将研究结果应用在三体问题,并详细研究其状态(频率,稳定性等)。作品中也包含庞加莱复现定理(Poincaré recurrence theorem),该定理指出某些系统在经过足够长但有限的时间之后,将返回到非常接近初始状态的状态。

俄罗斯数学家李亚普诺夫发展许多重要的近似方法。他在1899年发展出的方法,使得定义常微分方程组的稳定性是可行的。 他也创造了动力系统稳定性的现代理论。

美国数学家伯克霍夫在1913年证明了庞加莱的最终几何定理(Last Geometric Theorem),一个三体问题的特殊形况。在1927年,他则发行了《动力系统》(Dynamical Systems)。在1931年,伯克霍夫发现了最使他名留青史的结果,现在称作遍历定理。

美国数学家斯梅尔也对动力系统作出重大贡献。他的贡献马蹄映射推动了动力系统重要研究,此外他还勾划出研究计划,让很多研究者实行。

乌克兰数学家亚历山大·沙可夫斯基(英语:Oleksandr Mykolayovych Sharkovsky)在1964年给出关于离散动力系统的沙可夫斯基定理(英语:Sharkovsky’s theorem),此定理的一个含义是,如果实数轴上的离散动力系统具有周期为3的周期点,那么它必定具有任意周期的周期点。

注释

^ Holmes, Philip. “Poincaré, celestial mechanics, dynamical-systems theory and “chaos”.” Physics Reports 193.3 (1990): 137-163.

参考书籍

.mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}

Geometrical theory of dynamical systems Nils Berglund’s lecture notes for a course at ETH at the advanced undergraduate level.

Dynamical systems(页面存档备份,存于互联网档案馆). George D. Birkhoff’s 1927 book already takes a modern approach to dynamical systems.

Chaos: classical and quantum. An introduction to dynamical systems from the periodic orbit point of view.

Introduction to Social Macrodynamics (页面存档备份,存于互联网档案馆). Mathematical models of the World System development

Differential Equations, Dynamical Systems, and an Introduction to Chaos 微分方程、动力系统与混沌导论

延伸阅读

Works providing a broad coverage:

Ralph Abraham and Jerrold E. Marsden. Foundations of mechanics. Benjamin–Cummings. 1978. ISBN 0-8053-0102-X.  (available as a reprint: .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:”””””””‘””‘”}.mw-parser-output .citation .cs1-lock-free a{background:url(“//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png”)no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url(“//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png”)no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url(“//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png”)no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url(“//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png”)no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}ISBN 0-201-40840-6)

Encyclopaedia of Mathematical Sciences (

ISSN 0938-0396) has a sub-series on dynamical systems with reviews of current research.

Christian Bonatti; Lorenzo J. Díaz; Marcelo Viana. Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective. Springer. 2005. ISBN 3-540-22066-6. 

Stephen Smale. Differentiable dynamical systems. Bulletin of the American Mathematical Society. 1967, 73 (6): 747–817. doi:10.1090/S0002-9904-1967-11798-1. 

Introductory texts with a unique perspective:

V. I. Arnold. Mathematical methods of classical mechanics. Springer-Verlag. 1982. ISBN 0-387-96890-3. 

Jacob Palis and Welington de Melo. Geometric theory of dynamical systems: an introduction. Springer-Verlag. 1982. ISBN 0-387-90668-1. 

David Ruelle. Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press. 1989. ISBN 0-12-601710-7. 

Tim Bedford, Michael Keane and Caroline Series, eds.. Ergodic theory, symbolic dynamics and hyperbolic spaces. Oxford University Press. 1991. ISBN 0-19-853390-X. 

Ralph H. Abraham and Christopher D. Shaw. Dynamics—the geometry of behavior, 2nd edition. Addison-Wesley. 1992. ISBN 0-201-56716-4. 

Textbooks

Kathleen T. Alligood, Tim D. Sauer and James A. Yorke. Chaos. An introduction to dynamical systems. Springer Verlag. 2000. ISBN 0-387-94677-2. 

Oded Galor. Discrete Dynamical Systems. Springer. 2011. ISBN 978-3-642-07185-0. 

Morris W. Hirsch, Stephen Smale and Robert L. Devaney. Differential Equations, dynamical systems, and an introduction to chaos. Academic Press. 2003. ISBN 0-12-349703-5. 

Anatole Katok; Boris Hasselblatt. Introduction to the modern theory of dynamical systems. Cambridge. 1996. ISBN 0-521-57557-5. 

Stephen Lynch. Dynamical Systems with Applications using Maple 2nd Ed.. Springer. 2010. ISBN 0-8176-4389-3. 

Stephen Lynch. Dynamical Systems with Applications using Mathematica. Springer. 2007. ISBN 0-8176-4482-2. 

Stephen Lynch. Dynamical Systems with Applications using MATLAB 2nd Edition. Springer International Publishing. 2014. ISBN 3319068199. 

James Meiss. Differential Dynamical Systems. SIAM. 2007. ISBN 0-89871-635-7. 

David D. Nolte. Introduction to Modern Dynamics: Chaos, Networks, Space and Time. Oxford University Press. 2015. ISBN 978-0199657032. 

Julien Clinton Sprott. Chaos and time-series analysis. Oxford University Press. 2003. ISBN 0-19-850839-5. 

Steven H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology chemistry and engineering. Addison Wesley. 1994. ISBN 0-201-54344-3. 

Teschl, Gerald. Ordinary Differential Equations and Dynamical Systems. Providence: American Mathematical Society. 2012 . ISBN 978-0-8218-8328-0. (原始内容存档于2012-06-26). 

Stephen Wiggins. Introduction to Applied Dynamical Systems and Chaos. Springer. 2003. ISBN 0-387-00177-8. 

Popularizations:

Florin Diacu and Philip Holmes. Celestial Encounters. Princeton. 1996. ISBN 0-691-02743-9. 

James Gleick. Chaos: Making a New Science. Penguin. 1988. ISBN 0-14-009250-1. 

Ivar Ekeland. Mathematics and the Unexpected (Paperback). University Of Chicago Press. 1990. ISBN 0-226-19990-8. 

Ian Stewart. Does God Play Dice? The New Mathematics of Chaos. Penguin. 1997. ISBN 0-14-025602-4.