高并发下也可以使用HashTable 、Collections.synchronizedMap因为他们是线程安全的,但是却牺牲了性能,无论是读操作、写操作都是给整个集合加锁,导致同一时间内其他操作均为之阻塞。

ConcurrentHashMap则兼容了安全和效率问题。

ConcurrentHashMap的Segment概念:

Segment是什么呢?Segment本身就相当于一个HashMap对象。

同HashMap一样,Segment包含一个HashEntry数组,数组中的每一个HashEntry既是一个键值对,也是一个链表的头节点。

单一的Segment结构如下:

JDK1.7 ConcurrentHashMap–解决高并发下的HashMap使用问题-冯金伟博客园

像这样的Segment对象,在ConcurrentHashMap集合中有多少个呢?有2的N次方个,共同保存在一个名为segments的数组当中。

因此整个ConcurrentHashMap的结构如下:

 JDK1.7 ConcurrentHashMap–解决高并发下的HashMap使用问题-冯金伟博客园

可以说,ConcurrentHashMap是一个二级哈希表。在一个总的哈希表下面,有若干个子哈希表。

这样的二级结构,和数据库的水平拆分有些相似。

ConcurrentHashMap采用了“锁分段技术”,每个segment就是一个区,读写操作高度自治,互相不干涉。

Case1:不同Segment的并发写入

JDK1.7 ConcurrentHashMap–解决高并发下的HashMap使用问题-冯金伟博客园

不同Segment的写入是可以并发执行的。

Case2:同一Segment的一写一读

 

JDK1.7 ConcurrentHashMap–解决高并发下的HashMap使用问题-冯金伟博客园

同一Segment的写和读是可以并发执行的。

Case3:同一Segment的并发写入

 JDK1.7 ConcurrentHashMap–解决高并发下的HashMap使用问题-冯金伟博客园

Segment的写入是需要上锁的,因此对同一Segment的并发写入会被阻塞。

由此可见,ConcurrentHashMap当中每个Segment各自持有一把锁。在保证线程安全的同时降低了锁的粒度,让并发操作效率更高。

Get方法:

1.为输入的Key做Hash运算,得到hash值。

2.通过hash值,定位到对应的Segment对象

3.再次通过hash值,定位到Segment当中数组的具体位置。

Put方法:

1.为输入的Key做Hash运算,得到hash值。

2.通过hash值,定位到对应的Segment对象

3.获取可重入锁

4.再次通过hash值,定位到Segment当中数组的具体位置。

5.插入或覆盖HashEntry对象。

6.释放锁。

每个Segment都各自加锁,返回size怎么保持一致性?

Size方法的目的是统计ConcurrentHashMap的总元素数量, 自然需要把各个Segment内部的元素数量汇总起来。

但是,如果在统计Segment元素数量的过程中,已统计过的Segment瞬间插入新的元素,这时候该怎么办呢?

JDK1.7 ConcurrentHashMap–解决高并发下的HashMap使用问题-冯金伟博客园

JDK1.7 ConcurrentHashMap–解决高并发下的HashMap使用问题-冯金伟博客园

ConcurrentHashMap的Size方法是一个嵌套循环,大体逻辑如下:

1.遍历所有的Segment。

2.把Segment的元素数量累加起来。

3.把Segment的修改次数累加起来。

4.判断所有Segment的总修改次数是否大于上一次的总修改次数。如果大于,说明统计过程中有修改,重新统计,尝试次数+1;如果不是。说明没有修改,统计结束。

5.如果尝试次数超过阈值,则对每一个Segment加锁,再重新统计。

6.再次判断所有Segment的总修改次数是否大于上一次的总修改次数。由于已经加锁,次数一定和上次相等。

7.释放锁,统计结束。

官方源代码如下:

public int size() {
    // Try a few times to get accurate count. On failure due to
   // continuous async changes in table, resort to locking.
   final Segment<K,V>[] segments = this.segments;
    int size;
    boolean overflow; // true if size overflows 32 bits
    long sum;         // sum of modCounts
    long last = 0L;   // previous sum
    int retries = -1; // first iteration isn't retry
    try {
        for (;;) {
            if (retries++ == RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    ensureSegment(j).lock(); // force creation
            }
            sum = 0L;
            size = 0;
            overflow = false;
            for (int j = 0; j < segments.length; ++j) {
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) {
                    sum += seg.modCount;
                    int c = seg.count;
                    if (c < 0 || (size += c) < 0)
                        overflow = true;
                }
            }
            if (sum == last)
                break;
            last = sum;
        }
    } finally {
        if (retries > RETRIES_BEFORE_LOCK) {
            for (int j = 0; j < segments.length; ++j)
                segmentAt(segments, j).unlock();
        }
    }
    return overflow ? Integer.MAX_VALUE : size;
} 

为什么这样设计呢?这种思想和乐观锁悲观锁的思想如出一辙。

为了尽量不锁住所有Segment,首先乐观地假设Size过程中不会有修改。当尝试一定次数,才无奈转为悲观锁,锁住所有Segment保证强一致性。