用神经网络模型,预测红酒质量
用神经网络模型,预测红酒质量;
后又用KNN逻辑回归SVM模型试了试,准确率都差不多,神经网络稍高。原始数据格式如下:
最后输出如下:
神经网络模型的预测准确率是: 0.755
KNN模型的预测准确率是:0.7275
LogicRe模型的预测准确率是:0.7325
SVM模型的预测准确率是:0.7425
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC import seaborn as sns import matplotlib.pyplot as plt pd.set_option('expand_frame_repr', False) # 当列太多时不换行 pd.set_option('display.max_rows', 500) # 最多显示数据的行数 file_path = './data/wine_quality.csv' if __name__ == '__main__': data_df = pd.read_csv(file_path) all_cols = data_df.columns.tolist() # 巧妙的取出了所有列名,并转化为list feat_cols = all_cols[:-1] # 看看quality值各有多少个 # sns.countplot(data_df['quality']) # 这句跟下面一句等价 # sns.countplot(data=data_df, x='quality') # plt.show() # 对quality列进行处理,原来若干种分类变为0、1两种分类 data_df.loc[data_df['quality'] <= 5,'quality'] = 0 data_df.loc[data_df['quality'] >= 6,'quality'] = 1 # sns.countplot(data=data_df, x='quality') # plt.show() X = data_df[feat_cols] y = data_df['quality'] # 对特征值进行归一化 scaler = MinMaxScaler() X_process = scaler.fit_transform(X) X_train,X_test,y_train,y_test = train_test_split(X_process,y,test_size=0.25,random_state=10) # 神经网络模型;隐藏层也不是越多越好;max_iter设置太小会有警告(没达到最优),max_iter默认200;random_state设置后每次运行结果一样。 mlp_model = MLPClassifier(hidden_layer_sizes=(100,100),max_iter=1000,activation='relu',random_state=17) mlp_model.fit(X_train,y_train) accuracy = mlp_model.score(X_test,y_test) print('神经网络模型的预测准确率是:',accuracy) # KNN逻辑回归SVM模型试试 model_dict = { 'KNN': KNeighborsClassifier(n_neighbors=3), 'LogicRe': LogisticRegression(C=1e3, solver='liblinear', multi_class='auto'), 'SVM': SVC(C=1e3, gamma='auto') # C值越小表示越强的正则化,也就是更弱复杂度;C值默认为1.0 } for model_name,model in model_dict.items(): model.fit(X_train,y_train) acc = model.score(X_test,y_test) print('{}模型的预测准确率是:{}'.format(model_name,acc))