LaTeX:算法模板
LaTeX:算法模板
作者:凯鲁嘎吉 – 博客园 http://www.cnblogs.com/kailugaji/
参考一
documentclass{article} usepackage{algorithm} usepackage{algorithmic} enewcommand{algorithmicrequire}{ extbf{Input:}} %Use Input in the format of Algorithm enewcommand{algorithmicensure}{ extbf{Output:}} %UseOutput in the format of Algorithm % 参考:https://blog.csdn.net/jzwong/article/details/52399112 egin{document} % 例1 egin{algorithm}[htb] caption{ Framework of ensemble learning for our system.} label{alg:Framwork} egin{algorithmic}[1] %这个1 表示每一行都显示数字 REQUIRE ~~\ %算法的输入参数:Input The set of positive samples for current batch, $P_n$;\ The set of unlabelled samples for current batch, $U_n$;\ Ensemble of classifiers on former batches, $E_{n-1}$; ENSURE ~~\ %算法的输出:Output Ensemble of classifiers on the current batch, $E_n$; STATE Extracting the set of reliable negative and/or positive samples $T_n$ from $U_n$ with help of $P_n$; STATE Training ensemble of classifiers $E$ on $T_n cup P_n$, with help of data in former batches; STATE $E_n=E_{n-1}cup E$; STATE Classifying samples in $U_n-T_n$ by $E_n$; STATE Deleting some weak classifiers in $E_n$ so as to keep the capacity of $E_n$; RETURN $E_n$; %算法的返回值 end{algorithmic} end{algorithm} % 例2 egin{algorithm} caption{An example} label{alg:2} egin{algorithmic} STATE {set $r(t)=x(t)$} REPEAT STATE set $h(t)=r(t)$ REPEAT STATE set $h(t)=r(t)$ UNTIL{B} UNTIL{B} end{algorithmic} end{algorithm} % 例3 egin{algorithm} caption{Calculate $y = x^n$} label{alg:3} egin{algorithmic} REQUIRE $n geq 0 vee x eq 0$ ENSURE $y = x^n$ STATE $y Leftarrow 1$ IF{$n < 0$} STATE $X Leftarrow 1 / x$ STATE $N Leftarrow -n$ ELSE STATE $X Leftarrow x$ STATE $N Leftarrow n$ ENDIF WHILE{$N eq 0$} IF{$N$ is even} STATE $X Leftarrow X imes X$ STATE $N Leftarrow N / 2$ ELSE[$N$ is odd] STATE $y Leftarrow y imes X$ STATE $N Leftarrow N - 1$ ENDIF ENDWHILE end{algorithmic} end{algorithm} % 例4 egin{algorithm}[h] caption{An example for format For & While Loop in Algorithm} label{alg:4} egin{algorithmic}[1] FOR{each $i in [1,9]$} STATE initialize a tree $T_{i}$ with only a leaf (the root); STATE $T=T cup T_{i};$ ENDFOR FORALL {$c$ such that $c in RecentMBatch(E_{n-1})$} STATE $T=T cup PosSample(c)$; ENDFOR FOR{$i=1$; $i<n$; $i++$ } STATE $//$ Your source here; ENDFOR FOR{$i=1$ to $n$} STATE $//$ Your source here; ENDFOR STATE $//$ Reusing recent base classifiers. WHILE {$(|E_n| leq L_1 )and( D eq phi)$} STATE Selecting the most recent classifier $c_i$ from $D$; STATE $D=D-c_i$; STATE $E_n=E_n+c_i$; ENDWHILE end{algorithmic} end{algorithm} end{document}
结果:
参考二
documentclass{article} usepackage[ruled]{algorithm2e} %算法排版样式1 %usepackage[ruled,vlined]{algorithm2e} %算法排版样式2 %usepackage[linesnumbered,boxed]{algorithm2e} %算法排版样式3 % 参考:https://www.cnblogs.com/tsingke/p/5833221.html egin{document} % 例1 egin{algorithm}[H] % SetAlgoNoLine %去掉之前的竖线 caption{How to write algorithms} KwIn{this text} KwOut{how to write algorithm with LaTeX2e } initialization; \ While{not at end of this document}{ read current; \ eIf{understand} { go to next section; \ current section becomes this one; \ } { go back to the beginning of current section; \ } } end{algorithm} % 例2 egin{algorithm} SetAlgoNoLine %去掉之前的竖线 caption{identifyRowContext} KwIn{$r_i$, $Backgrd(T_i)$=${T_1,T_2,ldots ,T_n}$ and similarity threshold $ heta_r$} KwOut{$con(r_i)$} $con(r_i)= Phi$; \ For{$j=1;j le n;j e i$} { float $maxSim=0$; \ $r^{maxSim}=null$; \ While{not end of $T_j$} { compute Jaro($r_i,r_m$)($r_min T_j$); \ If{$(Jaro(r_i,r_m) ge heta_r)wedge (Jaro(r_i,r_m)ge r^{maxSim})$} { replace $r^{maxSim}$ with $r_m$; \ } } $con(r_i)=con(r_i)cup {r^{maxSim}}$; \ } return $con(r_i)$; \ end{algorithm} end{document}
结果:
参考文献
[1] latex算法流程图_开飞机的小毛驴儿-CSDN博客_latex 算法流程图
[2] LaTeX 算法代码排版 –latex2e范例总结 – Tsingke – 博客园