原帖地址: http://blog.csdn.net/nsrainbow/article/details/41748863 最新课程请关注原作者博客

声明

  • 本文基于Centos 6.x + CDH 5.x

Hive是什么

Hive 提供了一个让大家可以使用sql去查询数据的途径。让大家可以在hadoop上写sql语句。但是最好不要拿Hive进行实时的查询。因为Hive的实现原理是把sql语句转化为多个Map Reduce任务所以Hive非常慢,官方文档说Hive 适用于高延时性的场景而且很费资源。

举个简单的例子,可以像这样去查询

hive> select * from h_employee;
OK
1	1	peter
2	2	paul
Time taken: 9.289 seconds, Fetched: 2 row(s)

这个h_employee不一定是一个数据库表,有可能只是一个针对csv文件的元数据映射。

Hive 安装

相比起很多教程先介绍概念,我喜欢先动手装上,然后用例子来介绍概念。我们先来安装一下Hive

先确认是否已经安装了对应的yum源,如果没有照这个教程里面写的安装cdh的yum源http://blog.csdn.net/nsrainbow/article/details/36629339

hive 基本包

yum install hive -y

hive metastore

yum install hive-metastore

hive服务端

yum install hive-server2 -y

如果要跟hbase通讯就安装 hive-hbase

yum install hive-hbase -y

Hive metastore 服务

3种模式

hive metastore(元数据) 服务用来存储 Hive 表的元数据和分区。下面会介绍metastore的概念,现在先搞定安装再说。hive 存储 metastore有3种模式

内置存储模式

内置存储 Alex 的 Hadoop 菜鸟教程: 第10课 Hive 安装和使用教程-冯金伟博客园

用的是derby作为数据库,但是这个derby很挫啊,一个纯java的数据库,同时只能有一个会话,存粹测试玩玩。所以我们说下第二种模式

本地存储模式

Alex 的 Hadoop 菜鸟教程: 第10课 Hive 安装和使用教程-冯金伟博客园

在这种模式下,hive metastore 服务跟HiveServer进程共用一个进程,但是会另起一个线程来运行元数据数据库,这个线程有可能在另外一个机器上。内置的metastore服务跟metastore数据库之间通过JDBC交互。比上一个方案更进一步了,但是还是不够好,因为hive metastore跟HiveServer还共用一个进程呢,于是来介绍下CDH强烈推荐的第三种模式

远程模式

Alex 的 Hadoop 菜鸟教程: 第10课 Hive 安装和使用教程

在这种模式下,Hive metastore 服务运行在独立的jvm进程里面。 HiveServer2, HCatalog, Cloudera Impala™, 和其他进程通过 Thrift 的网络 API (在 hive.metastore.uris 属性里面配置)来跟它通讯。metastore 服务跟存储 metastore 的数据库之间通过JDBC (用 javax.jdo.option.ConnectionURL 属性配置)通讯. 数据库 , HiveServer 进程,和 metastore 服务可以运行在同一个机子上,但是如果把 HiveServer进程运行在另一台机器上会更高的可用性(就是不要把鸡蛋放在一个篮子里啦)和扩展性。

使用mysql作为metastore数据库

我们选择mysql作为metastore的数据库

安装mysql

如果你的机器上已经安装过mysql可以跳过这一步

yum install mysql-server

启动服务

service mysqld start

添加到自启动

chkconfig mysqld on

初始化mysql的一些参数,比如root用户的密码等

$ sudo /usr/bin/mysql_secure_installation
[...]
Enter current password for root (enter for none):
OK, successfully used password, moving on...
[...]
Set root password? [Y/n] y
New password:
Re-enter new password:
Remove anonymous users? [Y/n] Y
[...]
Disallow root login remotely? [Y/n] N
[...]
Remove test database and access to it [Y/n] Y
[...]
Reload privilege tables now? [Y/n] Y
All done!

安装mysql JDBC驱动

$ sudo yum install mysql-connector-java
$ ln -s /usr/share/java/mysql-connector-java.jar /usr/lib/hive/lib/mysql-connector-java.jar

第二步是把驱动建立一个软链到hive的lib库里面,让hive可以加载

创建metastore需要的用户和库

创建metastore库

$ mysql -u root -p
Enter password:
mysql> CREATE DATABASE metastore;
mysql> USE metastore;
mysql> SOURCE /usr/lib/hive/scripts/metastore/upgrade/mysql/hive-schema-0.13.0.mysql.sql;

创建hive用户

官方给的例子是

mysql> CREATE USER 'hive'@'metastorehost' IDENTIFIED BY 'mypassword';
...
mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'hive'@'metastorehost';
mysql> GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'metastorehost';
mysql> FLUSH PRIVILEGES;

这边metastorehost换成你metastore的机器的host名字,mypassword换成你想设定的密码

在本例子中是这样

mysql> CREATE USER 'hive'@'%' IDENTIFIED BY 'hive';mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'hive'@'%';mysql> GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'%';mysql> FLUSH PRIVILEGES;mysql> quit;

配置hive

编辑 /usr/lib/hive/conf/hive-site.xml

  • 假设你安装mysql的机器名叫host1,在 javax.jdo.option.ConnectionURL 中配置上jdbc连接
  • hive.metastore.uris 这个参数必须用ip,不懂为什么
  • hive.metastore.schema.verification 官方建议用true,官方说新旧版本的hive数据结构差别很大,要打开验证,免得出错
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>

  <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://host1/metastore</value>
    <description>the URL of the MySQL database</description>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.jdbc.Driver</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>hive</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>hive</value>
  </property>
  <property>
    <name>datanucleus.autoCreateSchema</name>
    <value>false</value>
  </property>
  <property>
    <name>datanucleus.fixedDatastore</name>
    <value>true</value>
  </property>
  <property>
    <name>datanucleus.autoStartMechanism</name> 
    <value>SchemaTable</value>
  </property> 
  <property>
    <name>hive.metastore.uris</name>
    <value>thrift://192.168.199.126:9083</value>
    <description>IP address (or fully-qualified domain name) and port of the metastore host</description>
  </property>
  <property>
    <name>hive.metastore.schema.verification</name>
    <value>true</value>
  </property>
</configuration>

配置HiveServer2

编辑 /etc/hive/conf/hive-site.xml 增加或者修改这两项

<property>
  <name>hive.support.concurrency</name>
  <description>Enable Hive's Table Lock Manager Service</description>
  <value>true</value>
</property>

<property>
  <name>hive.zookeeper.quorum</name>
  <description>Zookeeper quorum used by Hive's Table Lock Manager</description>
  <value>host1,host2</value>
</property>

如果你修改了zookeeper 的默认端口就增加或修改这个属性

<property>  <name>hive.zookeeper.client.port</name>  <value>2222</value>  <description>  The port at which the clients will connect.  </description></property>

启动服务

启动顺序是 hive-metastore -> hive-server2

service hive-metastore start
service hive-server2 start

启动的时候遇到问题

我遇到了一个问题,启动的时候报错

Starting Hive Metastore Server
Error creating temp dir in hadoop.tmp.dir /data/hdfs/tmp due to Permission denied

给 /tmp 文件夹一个写权限就好了

cd /data/hdfschmod a+rwx tmp

测试是否安装成功

使用hive进入客户端

$ hivehive>hive> show tables;OKTime taken: 10.345 seconds

Hive使用

metastore

Hive 中建立的表都叫metastore表。这些表并不真实的存储数据,而是定义真实数据跟hive之间的映射,就像传统数据库中表的meta信息,所以叫做metastore。实际存储的时候可以定义的存储模式有四种:

  • 内部表(默认)
  • 分区表
  • 桶表
  • 外部表

举个例子,这是一个简历内部表的语句

CREATE TABLE worker(id INT, name STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '4';

这个语句的意思是建立一个worker的内部表,内部表是默认的类型,所以不用写存储的模式。并且使用逗号作为分隔符存储

建表语句支持的类型

基本数据类型

tinyint / smalint / int /bigint

float / double

boolean

string

复杂数据类型

Array/Map/Struct

没有date /datetime

建完的表存在哪里呢?

在 /user/hive/warehouse 里面,可以通过hdfs来查看建完的表位置

$ hdfs dfs -ls /user/hive/warehouse
Found 11 items
drwxrwxrwt   - root     supergroup          0 2014-12-02 14:42 /user/hive/warehouse/h_employee
drwxrwxrwt   - root     supergroup          0 2014-12-02 14:42 /user/hive/warehouse/h_employee2
drwxrwxrwt   - wlsuser  supergroup          0 2014-12-04 17:21 /user/hive/warehouse/h_employee_export
drwxrwxrwt   - root     supergroup          0 2014-08-18 09:20 /user/hive/warehouse/h_http_access_logs
drwxrwxrwt   - root     supergroup          0 2014-06-30 10:15 /user/hive/warehouse/hbase_apache_access_log
drwxrwxrwt   - username supergroup          0 2014-06-27 17:48 /user/hive/warehouse/hbase_table_1
drwxrwxrwt   - username supergroup          0 2014-06-30 09:21 /user/hive/warehouse/hbase_table_2
drwxrwxrwt   - username supergroup          0 2014-06-30 09:43 /user/hive/warehouse/hive_apache_accesslog
drwxrwxrwt   - root     supergroup          0 2014-12-02 15:12 /user/hive/warehouse/hive_employee

一个文件夹对应一个metastore表

Hive 各种类型表使用

内部表

CREATE TABLE workers( id INT, name STRING)  ROW FORMAT DELIMITED FIELDS TERMINATED BY '4';

通过这样的语句就建立了一个内部表叫 workers,并且分隔符是逗号, \054 是ASCII 码
我们可以通过 show tables; 来看看有多少表,其实hive的很多语句是模仿mysql的,当你们不知道语句的时候,把mysql的语句拿来基本可以用。除了limit比较怪,这个后面会说

hive> show tables;OKh_employeeh_employee2h_employee_exporth_http_access_logshive_employeeworkersTime taken: 0.371 seconds, Fetched: 6 row(s)

建立完后,我们试着插入几条数据。这边要告诉大家Hive不支持单句插入的语句,必须批量,所以不要指望能用insert into workers values (1,’jack’)  这样的语句插入数据。hive支持的插入数据的方式有两种:

  • 从文件读取数据
  • 从别的表读出数据插入(insert from select)

这里我采用从文件读数据进来。先建立一个叫 worker.csv的文件

$ cat workers.csv1,jack2,terry3,michael

用LOAD DATA 导入到Hive的表中

hive> LOAD DATA LOCAL INPATH '/home/alex/workers.csv' INTO TABLE workers;Copying data from file:/home/alex/workers.csvCopying file: file:/home/alex/workers.csvLoading data to table default.workersTable default.workers stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 25, raw_data_size: 0]OKTime taken: 0.655 seconds


注意

  • 不要少了那个 LOCAL , LOAD DATA LOCAL INPATH 跟 LOAD DATA INPATH 的区别是一个是从你本地磁盘上找源文件,一个是从hdfs上找文件
  • 如果加上OVERWRITE可以再导入之前先清空表,比如 LOAD DATA LOCAL INPATH ‘/home/alex/workers.csv’ OVERWRITE INTO TABLE workers;

查询一下数据

hive> select * from workers;
OK
1	jack
2	terry
3	michael
Time taken: 0.177 seconds, Fetched: 3 row(s)

我们去看下导入后在hive内部表是怎么存的

# hdfs dfs -ls /user/hive/warehouse/workers/Found 1 items-rwxrwxrwt   2 root supergroup         25 2014-12-08 15:23 /user/hive/warehouse/workers/workers.csv

原来就是原封不动的把文件拷贝进去啊!就是这么土! 我们可以试验再放一个文件 workers2.txt (我故意把扩展名换一个,其实hive是不看扩展名的)

# cat workers2.txt 4,peter5,kate6,ted

导入

hive> LOAD DATA LOCAL INPATH '/home/alex/workers2.txt' INTO TABLE workers;Copying data from file:/home/alex/workers2.txtCopying file: file:/home/alex/workers2.txtLoading data to table default.workersTable default.workers stats: [num_partitions: 0, num_files: 2, num_rows: 0, total_size: 46, raw_data_size: 0]OKTime taken: 0.79 seconds

去看下文件的存储结构

# hdfs dfs -ls /user/hive/warehouse/workers/Found 2 items-rwxrwxrwt   2 root supergroup         25 2014-12-08 15:23 /user/hive/warehouse/workers/workers.csv-rwxrwxrwt   2 root supergroup         21 2014-12-08 15:29 /user/hive/warehouse/workers/workers2.txt

多出来一个workers2.txt 再用sql查询下

hive> select * from workers;OK1	jack2	terry3	michael4	peter5	kate6	tedTime taken: 0.144 seconds, Fetched: 6 row(s)

分区表

分区表是用来加速查询的,比如你的数据非常多,但是你的应用场景是基于这些数据做日报表,那你就可以根据日进行分区,当你要做2014-05-05的报表的时候只需要加载2014-05-05这一天的数据就行了。我们来创建一个分区表来看下

create table partition_employee(id int, name string) 
partitioned by(daytime string) 
row format delimited fields TERMINATED BY '4';

可以看到分区的属性,并不是任何一个列 我们先建立2个测试数据文件,分别对应两天的数据

# cat 2014-05-0522,kitty33,lily# cat 2014-05-0614,sami45,micky

导入到分区表里面

hive> LOAD DATA LOCAL INPATH '/home/alex/2014-05-05' INTO TABLE partition_employee partition(daytime='2014-05-05');Copying data from file:/home/alex/2014-05-05Copying file: file:/home/alex/2014-05-05Loading data to table default.partition_employee partition (daytime=2014-05-05)Partition default.partition_employee{daytime=2014-05-05} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]Table default.partition_employee stats: [num_partitions: 1, num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]OKTime taken: 1.154 secondshive> LOAD DATA LOCAL INPATH '/home/alex/2014-05-06' INTO TABLE partition_employee partition(daytime='2014-05-06');Copying data from file:/home/alex/2014-05-06Copying file: file:/home/alex/2014-05-06Loading data to table default.partition_employee partition (daytime=2014-05-06)Partition default.partition_employee{daytime=2014-05-06} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]Table default.partition_employee stats: [num_partitions: 2, num_files: 2, num_rows: 0, total_size: 42, raw_data_size: 0]OKTime taken: 0.763 seconds

导入的时候通过 partition  来指定分区。
查询的时候通过指定分区来查询

hive> select * from partition_employee where daytime='2014-05-05';OK22	kitty	2014-05-0533	lily	2014-05-05Time taken: 0.173 seconds, Fetched: 2 row(s)

我的查询语句并没有什么特别的语法,hive 会自动判断你的where语句中是否包含分区的字段。而且可以使用大于小于等运算符

hive> select * from partition_employee where daytime>='2014-05-05';OK22	kitty	2014-05-0533	lily	2014-05-0514	sami	2014-05-0645	mick'	2014-05-06Time taken: 0.273 seconds, Fetched: 4 row(s)

我们去看看存储的结构

# hdfs dfs -ls /user/hive/warehouse/partition_employeeFound 2 itemsdrwxrwxrwt   - root supergroup          0 2014-12-08 15:57 /user/hive/warehouse/partition_employee/daytime=2014-05-05drwxrwxrwt   - root supergroup          0 2014-12-08 15:57 /user/hive/warehouse/partition_employee/daytime=2014-05-06

我们试试二维的分区表

create table p_student(id int, name string) partitioned by(daytime string,country string) row format delimited fields TERMINATED BY '4';

查入一些数据

# cat 2014-09-09-CN 
1,tammy
2,eric
# cat 2014-09-10-CN 
3,paul
4,jolly
# cat 2014-09-10-EN 
44,ivan
66,billy

导入hive

hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-09-CN' INTO TABLE p_student partition(daytime='2014-09-09',country='CN');Copying data from file:/home/alex/2014-09-09-CNCopying file: file:/home/alex/2014-09-09-CNLoading data to table default.p_student partition (daytime=2014-09-09, country=CN)Partition default.p_student{daytime=2014-09-09, country=CN} stats: [num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0]Table default.p_student stats: [num_partitions: 1, num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0]OKTime taken: 0.736 secondshive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-10-CN' INTO TABLE p_student partition(daytime='2014-09-10',country='CN');Copying data from file:/home/alex/2014-09-10-CNCopying file: file:/home/alex/2014-09-10-CNLoading data to table default.p_student partition (daytime=2014-09-10, country=CN)Partition default.p_student{daytime=2014-09-10, country=CN} stats: [num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0]Table default.p_student stats: [num_partitions: 2, num_files: 2, num_rows: 0, total_size: 38, raw_data_size: 0]OKTime taken: 0.691 secondshive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-10-EN' INTO TABLE p_student partition(daytime='2014-09-10',country='EN');Copying data from file:/home/alex/2014-09-10-ENCopying file: file:/home/alex/2014-09-10-ENLoading data to table default.p_student partition (daytime=2014-09-10, country=EN)Partition default.p_student{daytime=2014-09-10, country=EN} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]Table default.p_student stats: [num_partitions: 3, num_files: 3, num_rows: 0, total_size: 59, raw_data_size: 0]OKTime taken: 0.622 seconds

看看存储结构

# hdfs dfs -ls /user/hive/warehouse/p_studentFound 2 itemsdrwxr-xr-x   - root supergroup          0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-09drwxr-xr-x   - root supergroup          0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-10# hdfs dfs -ls /user/hive/warehouse/p_student/daytime=2014-09-09Found 1 itemsdrwxr-xr-x   - root supergroup          0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-09/country=CN

查询一下数据

hive> select * from p_student;OK1	tammy	2014-09-09	CN2	eric	2014-09-09	CN3	paul	2014-09-10	CN4	jolly	2014-09-10	CN44	ivan	2014-09-10	EN66	billy	2014-09-10	ENTime taken: 0.228 seconds, Fetched: 6 row(s)
hive> select * from p_student where daytime='2014-09-10' and country='EN';OK44	ivan	2014-09-10	EN66	billy	2014-09-10	ENTime taken: 0.224 seconds, Fetched: 2 row(s)

桶表

桶表是根据某个字段的hash值,来将数据扔到不同的“桶”里面。外国人有个习惯,就是分类东西的时候摆几个桶,上面贴不同的标签,所以他们取名的时候把这种表形象的取名为桶表。
桶表表专门用于采样分析
下面这个例子是官网教程直接拷贝下来的,因为分区表跟桶表是可以同时使用的,所以这个例子中同时使用了分区跟桶两种特性

CREATE TABLE b_student(id INT, name STRING)
PARTITIONED BY(dt STRING, country STRING)
CLUSTERED BY(id) SORTED BY(name) INTO 4 BUCKETS
row format delimited 
    fields TERMINATED BY '4';

意思是根据userid来进行计算hash值,用viewTIme来排序存储 做数据跟导入的过程我就不在赘述了,这是导入后的数据

hive> select * from b_student;OK1	tammy	2014-09-09	CN2	eric	2014-09-09	CN3	paul	2014-09-10	CN4	jolly	2014-09-10	CN34	allen	2014-09-11	ENTime taken: 0.727 seconds, Fetched: 5 row(s)

从4个桶中采样抽取一个桶的数据

hive> select * from b_student tablesample(bucket 1 out of 4 on id);Total MapReduce jobs = 1Launching Job 1 out of 1Number of reduce tasks is set to 0 since there's no reduce operatorStarting Job = job_1406097234796_0041, Tracking URL = http://hadoop01:8088/proxy/application_1406097234796_0041/Kill Command = /usr/lib/hadoop/bin/hadoop job  -kill job_1406097234796_0041Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 02014-12-08 17:35:56,995 Stage-1 map = 0%,  reduce = 0%2014-12-08 17:36:06,783 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.9 sec2014-12-08 17:36:07,845 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.9 secMapReduce Total cumulative CPU time: 2 seconds 900 msecEnded Job = job_1406097234796_0041MapReduce Jobs Launched: Job 0: Map: 1   Cumulative CPU: 2.9 sec   HDFS Read: 482 HDFS Write: 22 SUCCESSTotal MapReduce CPU Time Spent: 2 seconds 900 msecOK4	jolly	2014-09-10	CN

外部表

外部表就是存储不是由hive来存储的,比如可以依赖Hbase来存储,hive只是做一个映射而已。我用Hbase来举例
先建立一张Hbase表叫 employee

hbase(main):005:0> create 'employee','info'  
0 row(s) in 0.4740 seconds  
  
=> Hbase::Table - employee  
hbase(main):006:0> put 'employee',1,'info:id',1  
0 row(s) in 0.2080 seconds  
  
hbase(main):008:0> scan 'employee'  
ROW                                      COLUMN+CELL                                                                                                             
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                        
1 row(s) in 0.0610 seconds  
  
hbase(main):009:0> put 'employee',1,'info:name','peter'  
0 row(s) in 0.0220 seconds  
  
hbase(main):010:0> scan 'employee'  
ROW                                      COLUMN+CELL                                                                                                             
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                        
 1                                       column=info:name, timestamp=1417591321072, value=peter                                                                  
1 row(s) in 0.0450 seconds  
  
hbase(main):011:0> put 'employee',2,'info:id',2  
0 row(s) in 0.0370 seconds  
  
hbase(main):012:0> put 'employee',2,'info:name','paul'  
0 row(s) in 0.0180 seconds  
  
hbase(main):013:0> scan 'employee'  
ROW                                      COLUMN+CELL                                                                                                             
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                        
 1                                       column=info:name, timestamp=1417591321072, value=peter                                                                  
 2                                       column=info:id, timestamp=1417591500179, value=2                                                                        
 2                                       column=info:name, timestamp=1417591512075, value=paul                                                                   
2 row(s) in 0.0440 seconds 

建立外部表进行映射

hive> CREATE EXTERNAL TABLE h_employee(key int, id int, name string)       > STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'      > WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key, info:id,info:name")      > TBLPROPERTIES ("hbase.table.name" = "employee");  OK  Time taken: 0.324 seconds  hive> select * from h_employee;  OK  1   1   peter  2   2   paul  Time taken: 1.129 seconds, Fetched: 2 row(s)

查询语法

具体语法可以参考官方手册https://cwiki.apache.org/confluence/display/Hive/Tutorial  我只说几个比较奇怪的点

显示条数

展示x条数据,用的还是limit,比如

hive> select * from h_employee limit 1
    > ;
OK
1	1	peter
Time taken: 0.284 seconds, Fetched: 1 row(s)

但是不支持起点,比如offset

参考资料

  • http://www.cloudera.com/content/cloudera/en/documentation/core/v5-2-x/topics/cdh_ig_hiveserver2_configure.html