首先是注意力公式:

transformer中自注意力和多头注意力的pytorch实现-冯金伟博客园

其计算图:

transformer中自注意力和多头注意力的pytorch实现-冯金伟博客园

代码:

def attention(query, key, value, mask=None, dropout=None): 
# query, key, value的形状类似于(30, 8, 10, 64), (30, 8, 11, 64), 
#(30, 8, 11, 64),例如30是batch.size,即当前batch中有多少一个序列;
# 8=head.num,注意力头的个数;
# 10=目标序列中词的个数,64是每个词对应的向量表示;
# 11=源语言序列传过来的memory中,当前序列的词的个数,
# 64是每个词对应的向量表示。
# 类似于,这里假定query来自target language sequence;
# key和value都来自source language sequence.
  "Compute 'Scaled Dot Product Attention'" 
  d_k = query.size(-1) # 64=d_k
  scores = torch.matmul(query, key.transpose(-2, -1)) / 
    math.sqrt(d_k) # 先是(30,8,10,64)和(30, 8, 64, 11)相乘,
    #(注意是最后两个维度相乘)得到(30,8,10,11),
    #代表10个目标语言序列中每个词和11个源语言序列的分别的“亲密度”。
    #然后除以sqrt(d_k)=8,防止过大的亲密度。
    #这里的scores的shape是(30, 8, 10, 11)
  if mask is not None: 
    scores = scores.masked_fill(mask == 0, -1e9) 
    #使用mask,对已经计算好的scores,按照mask矩阵,填-1e9,
    #然后在下一步计算softmax的时候,被设置成-1e9的数对应的值~0,被忽视
  p_attn = F.softmax(scores, dim = -1) 
    #对scores的最后一个维度执行softmax,得到的还是一个tensor, 
    #(30, 8, 10, 11)
  if dropout is not None: 
    p_attn = dropout(p_attn) #执行一次dropout
  return torch.matmul(p_attn, value), p_attn
#返回的第一项,是(30,8,10, 11)乘以(最后两个维度相乘)
#value=(30,8,11,64),得到的tensor是(30,8,10,64),
#和query的最初的形状一样。另外,返回p_attn,形状为(30,8,10,11). 
#注意,这里返回p_attn主要是用来可视化显示多头注意力机制。

多头注意力:

transformer中自注意力和多头注意力的pytorch实现-冯金伟博客园

class MultiHeadedAttention(nn.Module): 
  def __init__(self, h, d_model, dropout=0.1): 
    # h=8, d_model=512
    "Take in model size and number of heads." 
    super(MultiHeadedAttention, self).__init__() 
    assert d_model % h == 0 # We assume d_v always equals d_k 512%8=0
    self.d_k = d_model // h # d_k=512//8=64
    self.h = h #8
    self.linears = clones(nn.Linear(d_model, d_model), 4) 
    #定义四个Linear networks, 每个的大小是(512, 512)的,
    #每个Linear network里面有两类可训练参数,Weights,
    #其大小为512*512,以及biases,其大小为512=d_model。

    self.attn = None 
    self.dropout = nn.Dropout(p=dropout)
  def forward(self, query, key, value, mask=None): 
   # 注意,输入query的形状类似于(30, 10, 512),
   # key.size() ~ (30, 11, 512), 
   #以及value.size() ~ (30, 11, 512)
    
    if mask is not None: # Same mask applied to all h heads. 
      mask = mask.unsqueeze(1) # mask下回细细分解。
    nbatches = query.size(0) #e.g., nbatches=30
    # 1) Do all the linear projections in batch from 
    #d_model => h x d_k 
    query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k)
      .transpose(1, 2) for l, x in 
      zip(self.linears, (query, key, value))] 
      # 这里是前三个Linear Networks的具体应用,
      #例如query=(30,10, 512) -> Linear network -> (30, 10, 512) 
      #-> view -> (30,10, 8, 64) -> transpose(1,2) -> (30, 8, 10, 64)
      #,其他的key和value也是类似地,
      #从(30, 11, 512) -> (30, 8, 11, 64)。
    # 2) Apply attention on all the projected vectors in batch. 
    x, self.attn = attention(query, key, value, mask=mask, 
      dropout=self.dropout) 
      #调用上面定义好的attention函数,输出的x形状为(30, 8, 10, 64);
      #attn的形状为(30, 8, 10=target.seq.len, 11=src.seq.len)
    # 3) "Concat" using a view and apply a final linear. 
    x = x.transpose(1, 2).contiguous().
      view(nbatches, -1, self.h * self.d_k) 
      # x ~ (30, 8, 10, 64) -> transpose(1,2) -> 
      #(30, 10, 8, 64) -> contiguous() and view -> 
      #(30, 10, 8*64) = (30, 10, 512)
return self.linears[-1](x) 
#执行第四个Linear network,把(30, 10, 512)经过一次linear network,
#得到(30, 10, 512).

摘自:https://zhuanlan.zhihu.com/p/107889011