这篇文章将为大家详细讲解有关如何使用R语言替换for循环,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

R语言中,for循环运行比较慢

for(i in 1:1000){
print(i^2)
}

补充:R语言:for循环使用小结

基本结构展示:

vals =c(5,6,7)
for(v in vals){
  print(v)
}
#即把大括号里的内容对vals里的每一个值都循环run一遍

实例展示:

1. paste() 命令是把几个字符连接起来

如paste("A","B","C",sep=" ")得到的就是“A B C”,在次基础上写如下for loop:

partnumber = c(1,2,5,78)
for(i in partnumber){
 print(paste("participant number",i, sep = " ")) 
}
#就可以得到一串参与者号码,根据上面给定的几个值, 从"participant number 1" 到"participant number 8"

2. 双重loop

partnumber = c(1,2,5,78)
institution =c("cancer center", "RMH", "Florey")
for(i in partnumber){
  for(j in institution){
  print(paste("participant number",i,", institution",j,sep = " "))
}
}
# 先对j循环,后对i循环,得到如下结果
[1] "participant number 1 , institution cancer center"
[1] "participant number 1 , institution RMH"
[1] "participant number 1 , institution Florey"
[1] "participant number 2 , institution cancer center"
[1] "participant number 2 , institution RMH"
[1] "participant number 2 , institution Florey"
[1] "participant number 5 , institution cancer center"
[1] "participant number 5 , institution RMH"
[1] "participant number 5 , institution Florey"
[1] "participant number 78 , institution cancer center"
[1] "participant number 78 , institution RMH"
[1] "participant number 78 , institution Florey"
# 两个loop的话,output得放最中心的loop里面,如果只要要第一层loop,就放在靠外一层括号里面,第二层括号就保留最后的一个值

3. 数据库实例演示

Titanic=read.csv("https://goo.gl/4Gqsnz")  #从网络读取数据<0.2, 0.2-0.6还是>0.6。

目的:看不同舱位(Pclass)和不同性别(Sex)的人的生存率是

A<- sort(unique(Pclass))   #sort可以把类别按大小顺序排,unique()命令是把分类变量的种类提取出来
B<- sort(unique(Sex))
for(i in A){ 
  for(j in B){
   if(mean(Survived[Pclass==i&Sex==j])<0.2){
    print(paste("for class",i,"sex",j,"mean survival is less than 0.2"))
  } else if (mean(Survived[Pclass==i&Sex==j])>0.6){
    print(paste("for class",i,"sex",j,"mean survival is more than 0.6"))
  } else {
    print(paste("for class",i,"sex",j,"mean survival is between 0.2 and 0.6"))} 
  }  
}

结果如下:

[1] "for class 1 sex female mean survival is more than 0.6"

[1] "for class 1 sex male mean survival is between 0.2 and 0.6"

[1] "for class 2 sex female mean survival is more than 0.6"

[1] "for class 2 sex male mean survival is less than 0.2"

[1] "for class 3 sex female mean survival is between 0.2 and 0.6"

[1] "for class 3 sex male mean survival is less than 0.2"

补充:R语言for循环批量生成变量,并且赋值

看代码~

rm(list=ls())
data <- read.table("MS_identified_information.txt",header = T,sep = "\t",quote="",na.strings = "",row.names = 1,comment.char = "")
name1 <- paste("H1299",sep = "_",c(1:3))
name2 <- paste("Metf",sep = "_",c(1:3))
name3 <- paste("OEMetf",sep = "_",c(1:3))
name <- data.frame(name1,name2,name3)
mean.data=data.frame(row.names(data))
for (i in 1:3){
  tmp <- subset(data,select = as.vector.factor(name[,i])) #筛选特定的样本
  mean_ <- as.data.frame(apply(tmp, 1, mean)) #行求平均值
  //assign()功能就是对变量进行赋值如i=1时,df1=mean_
  //把三次结果组合起来
  mean.data <- cbind.data.frame(mean.data,assign(paste("df", i, sep=""), mean_))
  //这里没有体现出变量,实际上生成了df1,df2,df3结果
}
colnames(mean.data) <- c("ID","H1299","Metf","OEMetf")
write.table(mean.data,file="MS_mean.xls",row.names = FALSE,sep = "\t",na="")