本篇文章为大家展示了如何在Pandas中利用DataFrame求差集,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

在Pandas中 求差集没有专门的函数。处理办法就是将两个DataFrame追加合并,然后去重。

divident.append(hasThisYearDivident)
noHasThisYearDivident = divident.drop_duplicates(subset='ts_code', keep=False, inplace=True, ignore_index=True)

具体函数用法:

如何在Pandas中利用DataFrame求差集-冯金伟博客园

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.append.html#pandas.DataFrame.append

如何在Pandas中利用DataFrame求差集-冯金伟博客园

在pandas中,两个DataFrame的差集并没有直接的库内置方法,现在我们希望有一种方法,就像python中set内置的求差集一样,来找到两个DataFrame的差集。

>>> a=set((1,2,3))
>>> a
{1, 2, 3}
>>> b=set((2,3,4))
>>> b
{2, 3, 4}
>>> a-b
{1}

上面代码片段是对set的内置求差集方法的回顾,现在我们希望能有类似的方法来找两个DataFrame的差集。

解决思路是这样的:

对于有同样Index的a,b两个DataFrame,如果现在要求a对b的差集,那么可以(1)连续两次扩充a,使用append方法(2)然后使用drop_duplicates方法对a进行去重,并且参数keep=False。原理很简单,也很巧妙,连续扩充2次a,那么新扩充完后的DataFrame中来自b的row肯定是重复的,去重时候,b全部被删除,与此同时,a中跟b重复的row也会顺带着被删除。

代码实现:

>>> import pandas as pd
>>> data_a={'state':[1,1,2],'pop':['a','b','c']}
>>> data_b={'state':[1,2,3],'pop':['b','c','d']}
>>> a=pd.DataFrame(data_a)
>>> b=pd.DataFrame(data_b)
>>> a
  state pop
0   1  a
1   1  b
2   2  c
>>> b
  state pop
0   1  b
1   2  c
2   3  d
>>> a=a.append(b)
>>> a=a.append(b)
>>> a
  state pop
0   1  a
1   1  b
2   2  c
0   1  b
1   2  c
2   3  d
0   1  b
1   2  c
2   3  d
>>> a.drop_duplicates(subset=['state','pop'],keep=False)
  state pop
0   1  a