金融指标技术分析库:
https://github.com/twopirllc/pandas-ta
zigzag的实现:
""" reference: https://github.com/jbn/ZigZag.git """ import numpy as np PEAK = 1 VALLEY = -1 def identify_initial_pivot(X, up_thresh, down_thresh): x_0 = X[0] x_t = x_0 max_x = x_0 min_x = x_0 max_t = 0 min_t = 0 up_thresh += 1 down_thresh += 1 for t in range(1, len(X)): x_t = X[t] if x_t / min_x >= up_thresh: return VALLEY if min_t == 0 else PEAK if x_t / max_x <= down_thresh: return PEAK if max_t == 0 else VALLEY if x_t > max_x: max_x = x_t max_t = t if x_t < min_x: min_x = x_t min_t = t t_n = len(X)-1 return VALLEY if x_0 < X[t_n] else PEAK def peak_valley_pivots(X, up_thresh, down_thresh): """ Find the peaks and valleys of a series. :param X: the series to analyze :param up_thresh: minimum relative change necessary to define a peak :param down_thesh: minimum relative change necessary to define a valley :return: an array with 0 indicating no pivot and -1 and 1 indicating valley and peak The First and Last Elements --------------------------- The first and last elements are guaranteed to be annotated as peak or valley even if the segments formed do not have the necessary relative changes. This is a tradeoff between technical correctness and the propensity to make mistakes in data analysis. The possible mistake is ignoring data outside the fully realized segments, which may bias analysis. """ if down_thresh > 0: raise ValueError('The down_thresh must be negative.') initial_pivot = identify_initial_pivot(X, up_thresh, down_thresh) t_n = len(X) pivots = np.zeros(t_n, dtype=np.int_) trend = -initial_pivot last_pivot_t = 0 last_pivot_x = X[0] pivots[0] = initial_pivot # Adding one to the relative change thresholds saves operations. Instead # of computing relative change at each point as x_j / x_i - 1, it is # computed as x_j / x_1. Then, this value is compared to the threshold + 1. # This saves (t_n - 1) subtractions. up_thresh += 1 down_thresh += 1 for t in range(1, t_n): x = X[t] r = x / last_pivot_x if trend == -1: if r >= up_thresh: pivots[last_pivot_t] = trend trend = PEAK last_pivot_x = x last_pivot_t = t elif x < last_pivot_x: last_pivot_x = x last_pivot_t = t else: if r <= down_thresh: pivots[last_pivot_t] = trend trend = VALLEY last_pivot_x = x last_pivot_t = t elif x > last_pivot_x: last_pivot_x = x last_pivot_t = t if last_pivot_t == t_n-1: pivots[last_pivot_t] = trend elif pivots[t_n-1] == 0: pivots[t_n-1] = -trend return pivots def max_drawdown(X): """ Compute the maximum drawdown of some sequence. :return: 0 if the sequence is strictly increasing. otherwise the abs value of the maximum drawdown of sequence X """ mdd = 0 peak = X[0] for x in X: if x > peak: peak = x dd = (peak - x) / peak if dd > mdd: mdd = dd return mdd if mdd != 0.0 else 0.0 def pivots_to_modes(pivots): """ Translate pivots into trend modes. :param pivots: the result of calling ``peak_valley_pivots`` :return: numpy array of trend modes. That is, between (VALLEY, PEAK] it is 1 and between (PEAK, VALLEY] it is -1. """ modes = np.zeros(len(pivots), dtype=np.int_) mode = -pivots[0] modes[0] = pivots[0] for t in range(1, len(pivots)): x = pivots[t] if x != 0: modes[t] = mode mode = -x else: modes[t] = mode return modes def compute_segment_returns(X, pivots): """ :return: numpy array of the pivot-to-pivot returns for each segment.""" pivot_points = X[pivots != 0] return pivot_points[1:] / pivot_points[:-1] - 1.0
使用示例:
import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt import numpy as np import pandas as pd import sys import pathlib sys.path.append("%s/zigzag" % pathlib.Path().absolute()) from zigzag import zigzag def plot_pivots(X, pivots): plt.xlim(0, len(X)) plt.ylim(X.min()*0.99, X.max()*1.01) plt.plot(np.arange(len(X)), X, 'k:', alpha=0.5) plt.plot(np.arange(len(X))[pivots != 0], X[pivots != 0], 'k-') plt.scatter(np.arange(len(X))[pivots == 1], X[pivots == 1], color='g') plt.scatter(np.arange(len(X))[pivots == -1], X[pivots == -1], color='r') np.random.seed(1997) X = np.cumprod(1 + np.random.randn(100) * 0.01) pivots = zigzag.peak_valley_pivots(X, 0.03, -0.03) plot_pivots(X, pivots) plt.show() modes = zigzag.pivots_to_modes(pivots) print(pd.Series(X).pct_change().groupby(modes).describe().unstack()) print(zigzag.compute_segment_returns(X, pivots))
pandas 的数据输入示例:
from pandas_datareader import get_data_yahoo X = get_data_yahoo('GOOG')['Adj Close'] pivots = peak_valley_pivots(X.values, 0.2, -0.2) ts_pivots = pd.Series(X, index=X.index) ts_pivots = ts_pivots[pivots != 0] X.plot() ts_pivots.plot(style='g-o');
———————————————————————————————————————————————————————————-
微信公众号: 共鸣圈
欢迎讨论,邮件: 924948$qq.com 请把$改成@
QQ群:263132197
QQ: 924948
良辰美景补天漏,风雨雷电洗地尘
———————————————————————————————————————————————————————————-