大家好,又见面了,我是你们的朋友风君子。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
《mixup:BEYOND EMPIRICAL RISK MINIMIZATION》
- 2017(ICLR2018),Hongyi Zhang et al. Mixup ,MIT和FAIR
Q: 为什么data augmentation是理解为控制模型复杂度?
A: 准确地说,我觉得data augmentation既不能简单地理解为增加training data,也不能简单地理解为控制模型复杂度,而是两种效果兼而有之。考虑图像识别里常用的改变aspect ratio做data augmentation的方法,生成的图像虽然和真实图像相似,但是并不是来自于data distribution,更不是它的i.i.d.抽样。而经典的supervised learning以及统计学习理论的基本假设就是训练集和测试集都是data distribution的i.i.d.抽样,所以这并不是经典意义上的增加training data。这些合成的training data的作用,流行的解释是“增强模型对某种变换的invariance”。这句话反过来说,就是机器学习里经常提到的“减少模型估计的variance”,也就是控制了模型的复杂度。需要注意的是,L2正则化、dropout等等也都是在控制模型复杂度,只不过它们没有考虑数据本身的分布,而data augmentation属于更加机智的控制模型复杂度的方法。
其实反过来看,L2正则化和dropout也各自等价于某种data augmentation。参考Vicinal Risk Minimization 和 [1506.08700] Dropout as data augmentation
Q: label线性加权后,不是得到了这两个样本中间的类别了吗?
A: label用的是one-hot vector编码,可以理解为对k个类别的每个类给出样本属于该类的概率。加权以后就变成了”two-hot”,也就是认为样本同时属于混合前的两个类别。
另一种视角是不混合label,而是用加权的输入在两个label上分别计算cross-entropy loss,最后把两个loss加权作为最终的loss。由于cross-entropy loss的性质,这种做法和把label线性加权是等价的,大家可以自行思考一下。
import numpy as np
import torch
def mixup_data(x, y, alpha=1.0, use_cuda=True):
'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''
if alpha > 0.:
lam = np.random.beta(alpha, alpha)
else:
lam = 1.
batch_size = x.size()[0]
if use_cuda:
index = torch.randperm(batch_size).cuda()
else:
index = torch.randperm(batch_size)
mixed_x = lam * x + (1 - lam) * x[index,:] # 自己和打乱的自己进行叠加
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(y_a, y_b, lam):
return lambda criterion, pred: lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
cutout:随机裁剪区域,填充0像素
cutmix:随机裁剪区域,填充其他图像到相应区域,代码可根据mixup来改写