转载:https://mp.weixin.qq.com/s?__biz=MzI4NDY4MTMyNA==&mid=2247489306&idx=1&sn=d5dc4ece13cddcf4ec3a28014e817e53&chksm=ebf6e219dc816b0f0de7e1183e8565a1b3edc735bf4ae3f640501c5319a34fcda4eb5eb91ed2&scene=21#wechat_redirect

高精地图的发展与自动驾驶汽车紧密相关,自从自动驾驶汽车开始上路公开测试以来,高精地图产业就应势而生并飞速发展。相对于以往的导航地图,高精地图是专为自动驾驶而生的,其服务的对象并非人类驾驶员,而是自动驾驶汽车。对于L3级别以上的自动驾驶汽车而言,高精地图是必备选项。

一方面,高精地图是为自动驾驶汽车规划道路行径的重要基础,能够为车辆提供定位、决策、交通动态信息等依据。另一方面,在自动驾驶汽车传感器出现故障或者周围环境较为恶劣时,高精地图也能确保车辆的基本行驶安全。本文将简要分析国内外主要高精度地图厂商发展现状:

转载:国内外高精地图厂商一览-冯金伟博客园

国际版

1、DMP

2013年,日本启动了名为SIP的项目,自动驾驶是它的核心之一。为了将SIP成果(基础地图的数据格式,精度管理方式)产业化,设立了“Dynamic Map Planning Co., Ltd.”(已下称DMP)公司。DMP成立代表日本动态高精度地图开始走向产业化。他们的目标是在2020年,也就是东京奥运会之前,实现日本高精度地图的覆盖。DMP公司2016年6月成立, DMP公司2016年12月开始提供高速公路样本数据(约500Km);2018年1月开始提供部分高速公路数据(约14,000Km/半程);预计2019年3月开始提供高速公路数据(约30,000Km/全程)。

2、Waymo

Waymo是谷歌旗下自动驾驶公司,目前具有全球最先进的自动驾驶技术。Waymo在2009年开始为自动驾驶创建地图,目前以满足美国多个城市的L4级别自动驾驶。

Waymo的高精度地图由谷歌地图发展而来,有强大的数据与技术背景,目前其制作的高精度地图仅用于自己的自动驾驶,并不作为商业化产品。其采集地图的手段为激光雷达加组合导航定位系统,并拥有一支庞大的测绘车队一起集中创建高精度地图。

3、Carmera

Carmera是一家要在车辆上安摄像头的公司。而在地图数据的采集形式上,Carmera也引入了众包模式,发动第三方来帮助绘制高精地图。不过与lvl5不同,他们的合作对象不是打车平台的司机,而是各物流公司的物流车。Carmera通过在各物流车上安装其传感器套件,采集高精地图。同时基于实时数据的挖掘,为物流车队提供安全以及能效方面的建议作为“回报”。不过在商业模式上,

Carmera认为其采集的数据不仅可为自动驾驶所用,还可以辅助工程测量,以及实时分析区域内的人、车流量,为城市规划提供依据。

4、Mobileye

Mobileye 是以色列一家生产协助驾驶员在驾驶过程中保障乘客安全和减少交通事故的视觉系统的公司。已投身研发 12 年并收获了前所未有的技术知识。公司在单目视觉高级驾驶辅助系统 (ADAS) 的开发方面走在世界前列,提供芯片搭载系统和计算机视觉算法运行客户端功能。2017年3月13日,英特尔正式宣布收购Mobileye。

Mobileye本身不涉及高精度地图的制作,但Mobileye的每一个摄像头都可以采集到前面的路况。例如,摄像头可以把路面中的车道线或者是限速块的距离可以定位出来,把每一个图像解析成数据,再把数据打包成数据包进行上传,并且在图上的底图上进行实时的叠加。通过Mobileye和大众、日产以及通用的合作,会有越来越多的车搭载Mobileye的摄像头。通过图像+智能+网联的结合方案,可以做到10cm级的高精度。

5、Civil Maps

Civil Maps成立于2014年,位于美国加州。2018年5月与AWare背后的软件技术公司Renovo合作,使高度自动化汽车制造商和技术提供商可无缝接入Civil Maps的车辆认知堆栈。Civil Maps主要路线为开发高精度地图与定位解决方案,通过提供给车厂软件和硬件系统进行车端数据收集、3D地图绘制以及自车定位。

Civil Maps的测绘方式是与车厂合作,利用摄像头或者雷达进行众包采集。其软件可将客户端收集到的数据进行处理,将有效数据上传到云平台,依靠强大的人工智能技术,它能高效的从庞大的点云数据中提取有用要素,将1T大小的点云图压缩至8MB,极大提高了传输与存储效率。

转载:国内外高精地图厂商一览-冯金伟博客园

6、DeepMap

高精度地图初创公司DeepMap于2016年成立于美国,其创始团队有着谷歌地图、谷歌地球、苹果地图、百度无人车等强大背景。DeepMap的技术路线是提供高精度地图完整的解决方案,包括地图的构建、更新、维护和云端服务,同时也提供高精度定位、仿真等服务。DeepMap的地图和定位模块已应用到多种车型和车队中,进行自动驾驶训练。在各种复杂路况、天气条件与驾驶速度下均展现了良好的性能。它获得了诸如博世风投、英伟达、高盛等大型企业与资本的投资,在2018年7月,获得了来中国的阿里巴巴、滴滴与北汽约6000万美元投资,DeepMap在中国的发展布局愈发明显。

DeepMap的收集地图数据的主要方式是利用激光雷达与组合导航定位系统的多传感器融合方案,以众包的模式进行数据采集。其开发的软件可以将众包车辆传感器收集到的数据转化成详细的地图。DeepMap提供可嵌入车辆的软件,解决定位、数据更新、路线规划和数据收集等问题,可以高效处理大规模数据。其高精度地图有着三维厘米级的道路信息,且可以提供实时的道路动态信息。

7、Lvl5

Lvl5由前特斯拉工程师创办,主要为自动驾驶车辆提供高精度地图,以极低的传感器成本——手机摄像头加上App来众包生产地图。这家公司开发了一款名为Payver的IOS应用,Payver上传的是行驶视频、GPS以及加速计信息,只要同一路段有多个用户行驶过后,就能制作高精度地图。

现在Lvl5已经能生成拥有交通标志、交通灯和车道线等特征的高精度地图。虽然不用激光雷达会面临特别的挑战,比如使用消费级硬件会让定位精度受到影响,而且整个过程很耗时,需要不少的加工处理。但Lvl5通过多辆车收集到的信息,用自己独特的方式克服了这一困难。而录制的视频在经过Lvl5后台处理后,能生成自动驾驶所需的高精度地图。

Lvl5已经覆盖了美国超过90%的高速公路,而到逐步在覆盖大部分的普通道路。这一地图范围比任何其它公司高出好几个数量级。

8、Here

Here前身为美国地图公司NAVTEQ,2008年被诺基亚收购并入自己的Here地图部门。2015年4月,诺基亚宣布剥离Here部门。最终奔驰、宝马、奥迪临时组成的联合体全资收购Here。与博世、大陆、先锋合作,使用他们的车载传感器(激光雷达、毫米波雷达、摄像头等)来实时更新地图。

Here的自动驾驶地图是传统导航地图的延伸。地图精度至少要达到亚米级,信息也更加丰富。道路基础信息(车道线、道路中心线等)、特征物(红绿灯、标志牌等)以及动态信息层(实时交通路况、天气等)分别由不同的图层,可以根据主机厂需要做个性化叠加。

2018年5月,Here,四维图新,Increment P (IPC)/Pioneer,SK Telecom宣布共同成立OneMap联盟,旨在制定全球地图标准。从2020年开始向行业提供统一标准的高精度地图产品与服务,为全球OEM自动驾驶方案的落地提供支撑。

9、TomTom

TomTom 是一家主营业务为地图、导航和GPS设备的荷兰公司,总部位于阿姆斯特丹。TomTom是全球少数拥有数字地图资产的公司之一,TomTom是Facebook、苹果等公司地图业务最重要的数据提供商。

TomTom的核心业务是在静态地图方面有着多年的开发经验,但这类地图产品是嵌入到车辆的导航装置当中的,近年来的需求量正在迅速下滑。为了转型,TomTom已经开始将重点放在对无人驾驶所需要的高精地图进行投资上。

2017年7月,TomTom宣布与百度达成合作协议,共同研发用于自动驾驶技术的高精地图。

转载:国内外高精地图厂商一览-冯金伟博客园

国内版

截止2019年5月,中国有19家企业获得导航电子地图制作甲级测绘资质。分别是百度、长地万方、四维图新、高德、凯立德、易图通、城际高科、国家基础地理信息中心、科菱航睿、光庭信息、浙江省第一测绘院、江苏省基础地理信息中心、灵图、立德空间信息、滴图科技、中海庭、初速度、宽凳科技、江苏晶众、江苏智途。

1、长地万方

百度地图已经完成30万公里的高速公路和部分城市道路测绘,相对精度达到10-20厘米。这些收集到的道路数据通过人工智能自动识别,并由人工验证信息后再上传至云端,目前百度自动驾驶地图数据自动化处理程度达到90%以上。

百度也利用Learning-Map平台以众包模式收集更新道路数据,只要安装了百度地图和传感器,车内手机、后装硬件和车端传感器采集到的环境数据,都会发送到该平台。

百度现已和福田、一汽、比亚迪、大众等诸多车企达成合作,共同研发自动驾驶地图。人们很快就能看到百度自动驾驶地图出现在江淮明年下半年推出自动驾驶量产车型上,未来也将应用在宝马、大众汽车上。近期,百度和博世集团、TomTom等相关产业巨头打造起一个“AIbased Map”,融汇基础数据、出行方式、智慧交通等信息,共同构建起“地图大脑”。

2、四维图新

2013年,四维图新开始了在自动驾驶地图领域的技术研究和探索。2015年成立智能地图事业部,正式开启面向Level3及以上自动驾驶系统的自动驾驶地图产品化研发与商业化落地工作。如今,四维图新已经掌握了从数据采集、自动化制图到众包更新以及快速迭代的自动驾驶地图完整产品能力解决方案。

目前,四维图新已于2019年初与宝马签署自动驾驶地图及相关服务许可协议,将为宝马集团所属品牌在中国2021 年至2024 年量产上市的新平台提供面向 L3 及以上自动驾驶系统的自动驾驶地图产品及服务。

3、高德地图

高德地图在2014年被阿里巴巴收购,并于同年开始自动驾驶地图研发。2016年10月高德宣布在自动驾驶汽车开发测试期间,将免费向汽车行业的合作伙伴提供自动驾驶地图数据。2017年8月,高德与千寻位置合作研发自动驾驶地图+高精度定位。

目前高德已经完成了超过32万公里的自动驾驶高精地图采集。高德专门用于HAD级别自动驾驶地图的采集车主要通过2个激光雷达和4个摄像头采集道路信息,精度可达10厘米。高德和精准位置服务商千寻位置合作,提供“自动驾驶地图+高精度定位”综合解决方案。目前双方在车道级定位上的解决方案可以实现普通道路条件下横向误差和纵向误差在7cm以内,高速/城市环路条件下横向误差6cm,纵向误差5cm以内。

高德先后和博世、英伟达、凯迪拉克合作研发自动驾驶地图中定位图层和数据更新方案。其自动驾驶高精地图已经应用在凯迪拉克的SuperCruise系统上。

转载:国内外高精地图厂商一览-冯金伟博客园

4、滴图科技

滴图(北京)科技有限公司成立于2016年02月,是北京小桔科技有限公司的全资子公司,后者就是我们常说的“滴滴出行”。不同于BAT收购现成的测绘公司。

2017年11月,滴图科技获得了导航电子地图制作的甲级测绘资质。庞大的快车、专车、出租车队伍对于滴滴来说是一笔财富,公司可以通过众包模式,利用滴滴运营车辆收集各地道路信息,数据量也是不可想象的。众包车辆的配置会决定回传哪些数据,决定更新哪些地图要素,未来滴滴就有能力参与到定义车辆的环节中去,利用自动驾驶功能和地图测绘结合,实现最终的理想更新模式。

5、立得空间

立得空间信息技术股份有限公司(简称立得空间)成立于1999年9月,是由武汉大学、两院院士李德仁、国内知名科技投资公司等共同组建的高科技企业,立得空间的主营业务由移动测量、智慧城市大数据及行业应用、物联网地图三大板块鼎足而成。立得空间是中国移动测量系统(MMS:Mobile Mapping System)的发明人,致力于运用“天-空-地”移动测量技术推动测绘产业变革,促进地理空间大数据的快速获取与利用。

6、初速度

北京初速度科技有限公司(Momenta)成立于2016年,致力于“打造自动驾驶大脑”,其核心技术是基于深度学习的环境感知、高精度地图、驾驶决策算法,致力于建设以机器视觉为主的自动驾驶导航地图的完整技术方案,大幅提升高精地图的建图效率,降低建图成本,实现自动驾驶的高精度定位和导航。产品包括不同级别的自动驾驶方案,以及衍生出的大数据服务。

Momenta高精地图主要通过提取众包车辆拍摄的2D图像语义点(车道标线、标牌等地标点),鉴于多张图像存在视差,Momenta利用点的对应关系,融合来自GPS和IMU的数据,可创建更高精度的地图,即可重建道路、交通标志及周围环境的3D位置。其成本据说可到使用激光雷达方案的1/10甚至1/100。

7、宽凳科技

宽凳(北京)科技有限公司成立于2016年03月,致力于通过智能众包高精度地图商业模式推动自动驾驶的广泛应用。核心技术包括深度学习、图像识别、三维视觉、智能机器人、地图构建以及基于此的大数据云服务。

在地图采集上,传统地图企业多采用激光雷达的方案,宽凳科技则更重视视觉方案,其地图采集设备并没有装备激光雷达。

随着自动驾驶技术和高精地图产业的发展,市场空间加大,势必会有更多的企业争取获得甲级测绘资质并进入自动驾驶用高精地图产业。

8、DeepMotion

DeepMotion目前未获得甲级测绘资质,成立于2017年7月,为无人驾驶汽车提供基于多传感器融合的3D环境感知、高精定位、以及高精地图构建的解决方案。以高精地图为核心,强调三维视觉与深度学习的结合、以及解决方案的可部署与可量产化。产品将包括硬件设备、软件算法以及相关的数据服务,并且注重针对中国交通道路环境特点的适配与优化。目前DeepMotion已经能达到前后30-40cm、左右10-20cm的定位精度。

面临的挑战

近几年,国内外科研机构和企业等开始了对高精度地图进行了大量研究,并准备商业化应用。国内外已经对高精度地图的使用方法进行了框架性的设计。但现阶段高精地图还存在以下问题:

1)绝大多数高精度地图数据采集更新慢、采集成本较高等问题。

2)高精度地图中不仅仅需要传感器采集的精确数据,还需要标准的数据地图格式。目前,针对高精度地图主流的地图数据格式有OpenDRIVE和Navigation Data Standard(简称,NDS)等。OpenDRIVE主要面向交通与驾驶方面,将车道、道路、信号灯以及路面属性均标准化;NDS则由汽车制造商和供应商共同开发,旨在面向无人驾驶导航应用,采用模块化的分层结构,目前已经有超过60家企业、供应商和高校机构加入该标准,包括百度、高德、Here、TomTom等。但是上述主流的地图标准中的数据存储格式均是基于欧洲道路设计,难以完全覆盖国内复杂多变的交通环境以及道路特征及交通规制。

3)目前国内研究高精度地图的企业、机构很多,陆续发布高精度地图相关调研报告,但并未形成统一的标准。