目录1. 概述2. 原理2.1. 平移2.2. 旋转2.3. 总结3. 实现4. 参考
1. 概述
我在《大地经纬度坐标与地心地固坐标的的转换》这篇文章中已经论述了地心坐标系的概念。我们知道,基于地心坐标系的坐标都是很大的值,这样的值是不太方便进行空间计算的,所以很多时候可以选取一个站心点,将这个很大的值变换成一个较小的值。以图形学的观点来看,地心坐标可以看作是世界坐标,站心坐标可以看作局部坐标。
站心坐标系以一个站心点为坐标原点,当把坐标系定义为X轴指东、Y轴指北,Z轴指天,就是ENU(东北天)站心坐标系。这样,从地心地固坐标系转换成的站心坐标系,就会成为一个符合常人对地理位置认知的局部坐标系。同时,只要站心点位置选的合理(通常可选取地理表达区域的中心点),表达的地理坐标都会是很小的值,非常便于空间计算。
2. 原理
令选取的站心点为P,其大地经纬度坐标为((B_p,L_p,H_p)),对应的地心地固坐标系为((X_p,Y_p,Z_p))。地心地固坐标系简称为ECEF,站心坐标系简称为ENU。
2.1. 平移
通过第一节的图可以看出,ENU要转换到ECEF,一个很明显的图形操作是平移变换,将站心移动到地心。根据站心点P在地心坐标系下的坐标((X_p,Y_p,Z_p)),可以很容易推出ENU转到ECEF的平移矩阵:
[T =
egin{bmatrix}
1&0&0&X_p\
0&1&0&Y_p\
0&0&1&Z_p\
0&0&0&1\
end{bmatrix}
]
反推之,ECEF转换到ENU的平移矩阵就是T的逆矩阵:
[T^{-1} =
egin{bmatrix}
1&0&0&-X_p\
0&1&0&-Y_p\
0&0&1&-Z_p\
0&0&0&1\
end{bmatrix}
]
2.2. 旋转
另外一个需要进行的图形变换是旋转变换,其旋转变换矩阵根据P点所在的经度L和纬度B确定。这个旋转变换有点难以理解,需要一定的空间想象能力,但是可以直接给出如下结论:
当从ENU转换到ECEF时,需要先旋转再平移,旋转是先绕X轴旋转((frac{pi}{2}-B)),再绕Z轴旋转((frac{pi}{2}+L))
当从ECEF转换到ENU时,需要先平移再旋转,旋转是先绕Z轴旋转(-(frac{pi}{2}+L)),再绕X轴旋转(-(frac{pi}{2}-B))
根据我在《WebGL简易教程(五):图形变换(模型、视图、投影变换)》提到的旋转变换,绕X轴旋转矩阵为:
[R_x =
egin{bmatrix}
1&0&0&0\
0&cosθ&-sinθ&0\
0&sinθ&cosθ&0\
0&0&0&1\
end{bmatrix}
]
绕Z轴旋转矩阵为:
[R_z =
egin{bmatrix}
cosθ&-sinθ&0&0\
sinθ&cosθ&0&0\
0&0&1&0\
0&0&0&1\
end{bmatrix}
]
从ENU转换到ECEF的旋转矩阵为:
[R = {R_z(frac{pi}{2}+L)}cdot{R_x(frac{pi}{2}-B)}
ag{1}
]
根据三角函数公式:
[sin(π/2+α)=cosα\
sin(π/2-α)=cosα\
cos(π/2+α)=-sinα\
cos(π/2-α)=sinα\
]
有:
[R_z(frac{pi}{2}+L) =
egin{bmatrix}
-sinL&-cosL&0&0\
cosL&-sinL&0&0\
0&0&1&0\
0&0&0&1\
end{bmatrix}
ag{2}
]
[R_x(frac{pi}{2}-B) =
egin{bmatrix}
1&0&0&0\
0&sinB&-cosB&0\
0&cosB&sinB&0\
0&0&0&1\
end{bmatrix}
ag{3}
]
将(2)、(3)带入(1)中,则有:
[R =
egin{bmatrix}
-sinL&-sinBcosL&cosBcosL&0\
cosL&-sinBsinL&cosBsinL&0\
0&cosB&sinB&0\
0&0&0&1\
end{bmatrix}
ag{4}
]
而从ECEF转换到ENU的旋转矩阵为:
[R^{-1} = {R_x(-(frac{pi}{2}-B))} cdot {R_z(-(frac{pi}{2}+L))}
ag{5}
]
旋转矩阵是正交矩阵,根据正交矩阵的性质:正交矩阵的逆矩阵等于其转置矩阵,那么可直接得:
[R^{-1} =
egin{bmatrix}
-sinL&cosL&0&0\
-sinBcosL&-sinBsinL&cosB&0\
cosBcosL&cosBsinL&sinB&0\
0&0&0&1\
end{bmatrix}
ag{6}
]
2.3. 总结
将上述公式展开,可得从ENU转换到ECEF的图形变换矩阵为:
[M = T cdot R =
egin{bmatrix}
1&0&0&X_p\
0&1&0&Y_p\
0&0&1&Z_p\
0&0&0&1\
end{bmatrix}
egin{bmatrix}
-sinL&-sinBcosL&cosBcosL&0\
cosL&-sinBsinL&cosBsinL&0\
0&cosB&sinB&0\
0&0&0&1\
end{bmatrix}
]
而从ECEF转换到ENU的图形变换矩阵为:
[M^{-1} = R^{-1} * T^{-1} =
egin{bmatrix}
-sinL&cosL&0&0\
-sinBcosL&-sinBsinL&cosB&0\
cosBcosL&cosBsinL&sinB&0\
0&0&0&1\
end{bmatrix}
egin{bmatrix}
1&0&0&-X_p\
0&1&0&-Y_p\
0&0&1&-Z_p\
0&0&0&1\
end{bmatrix}
]
3. 实现
接下来用代码实现这个坐标转换,选取一个站心点,以这个站心点为原点,获取某个点在这个站心坐标系下的坐标:
#include <iostream>
#include <eigen3/Eigen/Eigen>
#include <osgEarth/GeoData>
using namespace std;
const double epsilon = 0.000000000000001;
const double pi = 3.14159265358979323846;
const double d2r = pi / 180;
const double r2d = 180 / pi;
const double a = 6378137.0; //椭球长半轴
const double f_inverse = 298.257223563; //扁率倒数
const double b = a - a / f_inverse;
//const double b = 6356752.314245; //椭球短半轴
const double e = sqrt(a * a - b * b) / a;
void Blh2Xyz(double &x, double &y, double &z)
{
double L = x * d2r;
double B = y * d2r;
double H = z;
double N = a / sqrt(1 - e * e * sin(B) * sin(B));
x = (N + H) * cos(B) * cos(L);
y = (N + H) * cos(B) * sin(L);
z = (N * (1 - e * e) + H) * sin(B);
}
void Xyz2Blh(double &x, double &y, double &z)
{
double tmpX = x;
double temY = y ;
double temZ = z;
double curB = 0;
double N = 0;
double calB = atan2(temZ, sqrt(tmpX * tmpX + temY * temY));
int counter = 0;
while (abs(curB - calB) * r2d > epsilon && counter < 25)
{
curB = calB;
N = a / sqrt(1 - e * e * sin(curB) * sin(curB));
calB = atan2(temZ + N * e * e * sin(curB), sqrt(tmpX * tmpX + temY * temY));
counter++;
}
x = atan2(temY, tmpX) * r2d;
y = curB * r2d;
z = temZ / sin(curB) - N * (1 - e * e);
}
void TestBLH2XYZ()
{
//double x = 113.6;
//double y = 38.8;
//double z = 100;
//
//printf("原大地经纬度坐标:%.10lf %.10lf %.10lf
", x, y, z);
//Blh2Xyz(x, y, z);
//printf("地心地固直角坐标:%.10lf %.10lf %.10lf
", x, y, z);
//Xyz2Blh(x, y, z);
//printf("转回大地经纬度坐标:%.10lf %.10lf %.10lf
", x, y, z);
double x = -2318400.6045575836;
double y = 4562004.801366804;
double z = 3794303.054150639;
//116.9395751953 36.7399177551
printf("地心地固直角坐标:%.10lf %.10lf %.10lf
", x, y, z);
Xyz2Blh(x, y, z);
printf("转回大地经纬度坐标:%.10lf %.10lf %.10lf
", x, y, z);
}
void CalEcef2Enu(Eigen::Vector3d& topocentricOrigin, Eigen::Matrix4d& resultMat)
{
double rzAngle = -(topocentricOrigin.x() * d2r + pi / 2);
Eigen::AngleAxisd rzAngleAxis(rzAngle, Eigen::Vector3d(0, 0, 1));
Eigen::Matrix3d rZ = rzAngleAxis.matrix();
double rxAngle = -(pi / 2 - topocentricOrigin.y() * d2r);
Eigen::AngleAxisd rxAngleAxis(rxAngle, Eigen::Vector3d(1, 0, 0));
Eigen::Matrix3d rX = rxAngleAxis.matrix();
Eigen::Matrix4d rotation;
rotation.setIdentity();
rotation.block<3, 3>(0, 0) = (rX * rZ);
//cout << rotation << endl;
double tx = topocentricOrigin.x();
double ty = topocentricOrigin.y();
double tz = topocentricOrigin.z();
Blh2Xyz(tx, ty, tz);
Eigen::Matrix4d translation;
translation.setIdentity();
translation(0, 3) = -tx;
translation(1, 3) = -ty;
translation(2, 3) = -tz;
resultMat = rotation * translation;
}
void CalEnu2Ecef(Eigen::Vector3d& topocentricOrigin, Eigen::Matrix4d& resultMat)
{
double rzAngle = (topocentricOrigin.x() * d2r + pi / 2);
Eigen::AngleAxisd rzAngleAxis(rzAngle, Eigen::Vector3d(0, 0, 1));
Eigen::Matrix3d rZ = rzAngleAxis.matrix();
double rxAngle = (pi / 2 - topocentricOrigin.y() * d2r);
Eigen::AngleAxisd rxAngleAxis(rxAngle, Eigen::Vector3d(1, 0, 0));
Eigen::Matrix3d rX = rxAngleAxis.matrix();
Eigen::Matrix4d rotation;
rotation.setIdentity();
rotation.block<3, 3>(0, 0) = (rZ * rX);
//cout << rotation << endl;
double tx = topocentricOrigin.x();
double ty = topocentricOrigin.y();
double tz = topocentricOrigin.z();
Blh2Xyz(tx, ty, tz);
Eigen::Matrix4d translation;
translation.setIdentity();
translation(0, 3) = tx;
translation(1, 3) = ty;
translation(2, 3) = tz;
resultMat = translation * rotation;
}
void TestXYZ2ENU()
{
double L = 116.9395751953;
double B = 36.7399177551;
double H = 0;
cout << fixed << endl;
Eigen::Vector3d topocentricOrigin(L, B, H);
Eigen::Matrix4d wolrd2localMatrix;
CalEcef2Enu(topocentricOrigin, wolrd2localMatrix);
cout << "地心转站心矩阵:" << endl;
cout << wolrd2localMatrix << endl<<endl;
cout << "站心转地心矩阵:" << endl;
Eigen::Matrix4d local2WolrdMatrix;
CalEnu2Ecef(topocentricOrigin, local2WolrdMatrix);
cout << local2WolrdMatrix << endl;
double x = 117;
double y = 37;
double z = 10.3;
Blh2Xyz(x, y, z);
cout << "ECEF坐标(世界坐标):";
Eigen::Vector4d xyz(x, y, z, 1);
cout << xyz << endl;
cout << "ENU坐标(局部坐标):";
Eigen::Vector4d enu = wolrd2localMatrix * xyz;
cout << enu << endl;
}
void TestOE()
{
double L = 116.9395751953;
double B = 36.7399177551;
double H = 0;
osgEarth::SpatialReference *spatialReference = osgEarth::SpatialReference::create("epsg:4326");
osgEarth::GeoPoint centerPoint(spatialReference, L, B, H);
osg::Matrixd worldToLocal;
centerPoint.createWorldToLocal(worldToLocal);
cout << fixed << endl;
cout << "地心转站心矩阵:" << endl;
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
printf("%lf ", worldToLocal.ptr()[j * 4 + i]);
}
cout << endl;
}
cout << endl;
osg::Matrixd localToWorld;
centerPoint.createLocalToWorld(localToWorld);
cout << "站心转地心矩阵:" << endl;
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
printf("%lf ", localToWorld.ptr()[j * 4 + i]);
}
cout << endl;
}
cout << endl;
double x = 117;
double y = 37;
double z = 10.3;
osgEarth::GeoPoint geoPoint(spatialReference, x, y, z);
cout << "ECEF坐标(世界坐标):";
osg::Vec3d out_world;
geoPoint.toWorld(out_world);
cout << out_world.x() <<' '<< out_world.y() << ' ' << out_world.z() << endl;
cout << "ENU坐标(局部坐标):";
osg::Vec3d localCoord = worldToLocal.preMult(out_world);
cout << localCoord.x() << ' ' << localCoord.y() << ' ' << localCoord.z() << endl;
}
int main()
{
//TestBLH2XYZ();
cout << "使用Eigen进行转换实现:" << endl;
TestXYZ2ENU();
cout <<"---------------------------------------"<< endl;
cout << "通过OsgEarth进行验证:" << endl;
TestOE();
}
这个示例先用Eigen矩阵库,计算了坐标转换需要的矩阵和转换结果;然后通过osgEarth进行了验证,两者的结果基本一致。运行结果如下:
4. 参考
站心坐标系和WGS-84地心地固坐标系相互转换矩阵
Transformations between ECEF and ENU coordinates
GPS经纬度坐标WGS84到东北天坐标系ENU的转换
三维旋转矩阵;东北天坐标系(ENU);地心地固坐标系(ECEF);大地坐标系(Geodetic);经纬度对应圆弧距离