,该算法可预报平原、山地、海岸等不同地形的风速,并预测该区域内风电场的发电量,为电网调度提供数据支撑,提升风电消纳率。
在复杂的山地风电场中,使用达摩院AI预报的准确率可提升20%。目前该算法已服务国内多个风电场。
风电是发展最快的可再生能源之一,国家能源局数据显示,仅2021年,全国风电发电量达到6526亿千瓦时,同比增长40.5%。
然而,风具有随机性和间歇性特点,尤其是山地风电场受山谷风的局地环流影响,容易产生明显的局地小气候,常规天气预报无法准确反映出风电场所在区域的真实风速,从而造成发电功率预测准确率低下,电力系统不稳定等问题。
针对该问题,达摩院研AI Earth团队发研发了高精度网格气象与功率预报模型,模型融入了物理方程,使得预报结果满足物理约束,更接近真实情况;该模型还可高效提取地理空间特征,将天气预报精度提升至百米级,有效解决复杂地形风速差异大的问题,实现更为精确的风速和风功率预报。
据介绍,达摩院已和内蒙古东润能源公司展开合作,为国内多个风电场提供精细化气象服务。数据显示,在山地风电场中,达摩院AI的预测准确率提升明显,以湖南山区某风电场为例,过去该风电场在冬季风速预报均方根误差(RMSE)约为4.75,使用达摩院AI算法进行后,误差大幅降低至3.02,进而将风功率预报准确率提升20%以上。
达摩院AI Earth团队负责人李昊表示:“我们无法改变风的多变性特点,但结合传统数值模式的AI可以高效地捕捉到其中的变化,帮助新能源行业掌握「驭风之术」。”
2020年9月,达摩院发布AI Earth平台,可对卫星影像、无人机影像、实时视频流、气象数据、IoT数据等多源数据进行融合分析,目前,AI Earth相关技术已应用于水利部、国家气象中心、生态环境部等机构。